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The presence of dark energy in the Universe is inferred directly from the accelerated expansion of
the Universe, and indirectly, from measurements of cosmic microwave background (CMB) anisotropy.
Dark energy contributes about 2/3 of the critical density, is very smoothly distributed, and has large
negative pressure. Its nature is very much unknown. Most of its discernible consequences follow
from its effect on evolution of the expansion rate of the Universe, which in turn affects the growth
of density perturbations and the age of the Universe, and can be probed by the classical kinematic
cosmological tests. Absent a compelling theoretical model (or even a class of models), we describe
the dark energy by an effective equation-of-state w = pX/ρX which is allowed to vary with time.
We describe and compare different approaches for determining w(t), including magnitude-redshift
(Hubble) diagram, number counts of galaxies and clusters, and CMB anisotropy, focusing particular
attention on the use of a sample of several thousand type Ia supernova with redshifts z <∼ 1.7, as
might be gathered by the proposed SNAP satellite. Among other things, we derive optimal strategies
for constraining cosmological parameters using type Ia supernovae. While in the near term CMB
anisotropy will provide the first measurements of w, supernovae and number counts appear to have
the most potential to probe dark energy.

I. INTRODUCTION

There is good evidence that a mysterious form of dark
energy accounts for about 2/3rds of the matter and en-
ergy in the Universe. The direct evidence comes from dis-
tance measurements of type Ia supernovae (SNe Ia) which
indicate the expansion of the Universe is speeding up, not
slowing down [1, 2]. Equally strong indirect evidence now
comes from the factor of three discrepancy [3, 4] between
cosmic microwave background (CMB) anisotropy mea-
surements which indicate Ω0 ≃ 1.1 ± 0.07 [5, 6, 7] and
measurements of the matter density ΩM = 0.35±0.07 [8]
together with the consistency between the level of inho-
mogeneity revealed by CMB anisotropy and the struc-
ture that exists today (Ω0 is the fraction of critical den-
sity contributed by all forms of matter and energy). The
former implies the existence of a smooth component of
energy (or matter) that contributes 2/3rds of the critical
density; and the latter argues for it having large, negative
pressure, which leads to its repulsive gravity. Because a
smooth component of matter or energy interferes with
the growth of linear density perturbations and the for-
mation of structure, the energy density of the smooth
component must evolve more slowly than that of mat-
ter. The amount of growth needed to form the structure
seen today from the initial inhomogeneity revealed by
the CMB implies that the bulk pressure of the smooth
component must be more negative than about −ρ/2 [9].

(Because its pressure is comparable in magnitude to its
energy density, it is relativistic and energy like – hence
the term dark energy.)

Finally, additional indirect evidence for dark energy
comes from detailed studies of how galaxies and clusters
of galaxies formed from primeval density perturbations.
The cold dark matter (CDM) paradigm for structure for-
mation successfully accounts for most of the features of
the Universe we observe today (so much so that there is
virtually no competing theory). Of the flat CDM mod-
els (hot + cold, tilted, enhanced radiation, or very low
Hubble constant) the one with a cosmological constant
(ΛCDM) is the most successful and consistent with vir-
tually all observations [10].

Even before the evidence for dark energy discussed
above, there was a dark-energy candidate: the energy
density of the quantum vacuum (or cosmological con-
stant) for which p = −ρ. However, the inability of par-
ticle theorists to compute the energy of the quantum
vacuum – contributions from well understood physics
amount to 1055 times critical density – casts a dark
shadow on the cosmological constant [11]. It is possi-
ble that contributions from “new physics” add together
to nearly cancel those from known physics, leaving a tiny
cosmological constant. However, the fine tuning required
(a precision of at least 54 decimal places) makes a com-
plete cancellation seem more plausible.

If the cosmological constant is zero, something else
must be causing the Universe to speed up. A host of other
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possibilities have now been discussed: rolling scalar field
(or quintessence) [12, 13, 14, 15, 16]; a network of frus-
trated topological defects [17]; the energy of a metastable
vacuum state [18]; effects having to do with extra dimen-
sions [19]; quantum effects of a massive scalar field [20];
particles with a time-varying mass [21]; and “solid” or
“generalized” dark matter [22, 23]. While all of these
models have some motivation and attractive features,
none are compelling. On the other hand, the cosmo-
logical constant is extremely well motivated, but equally
problematic. This in essence is the dark energy problem.

The two most conspicuous features of dark energy are
smooth spatial distribution and large negative pressure.
While only vacuum energy is absolutely uniform in its
spatial distribution, all the other examples of dark en-
ergy only clump on the largest scales at a level that can
be neglected for most purposes [24] (more on this in the
Summary). Motivated by this as well as the absence
of compelling theoretical model or framework for dark
energy, Turner and White [25] have suggested param-
eterizing the dark energy by its bulk equation-of-state:
w ≡ 〈pX〉/〈ρX〉. For different dark energy models w
takes on different values (e.g., −1 for vacuum energy,
or −N/3 for topological defects of dimensionality N); w
can be time-varying (e.g., in models with a rolling scalar
field). In this language, the first step toward solving the
dark-energy problem is determining w(t).

While the dark-energy problem involves both cosmol-
ogy and fundamental physics, because of its diffuse na-
ture it seems likely that cosmological rather than lab-
oratory measurements have the most probative power.
(It has been emphasized that if the dark energy involves
a very light scalar field, there will be a new long-range
force that could be probed in the laboratory [26]). It
is the purpose of this paper to lay out the cosmological
consequences of dark energy that allow its nature to be
probed, and to assess their efficacy. Further, we present
in more detail some of the calculations that appeared in
the SNAP proposal [27]. In Sec. II we begin with an
overview of the cosmological observables that may be of
use as well as a discussion of their sensitivity to the dark-
energy equation-of-state w. In Sec. III we discuss the
relative merits of different cosmological observations in
probing the average value of w. Sec. IV addresses strate-
gies for the more difficult problem of probing the possible
time variation of w. Sec. V discusses optimal strategies
for determining dark-energy properties. In the final Sec-
tion we summarize our results and end with some general
remarks. We note that there are other studies of how best
to get at the nature of the dark energy [28, 29, 30, 31],
and where appropriate we compare results.

II. PRELIMINARIES

Although dark energy does not clump significantly,
it does significantly affect the large-scale dynamics of
the Universe, including the age of the Universe, the

growth of density perturbations and the classic cosmo-
logical tests [32]. All of the consequences of dark energy
follow from its effect on the expansion rate:

H2 =
8πG

3
(ρM + ρX) (1)

H(z)2 = H2
0

[

ΩM (1 + z)3+

ΩX exp[3

∫ z

0

(1 + w(x))d ln(1 + x)]

]

where ΩM (ΩX) is the fraction of critical density con-
tributed by matter (dark energy) today, a flat Universe
is assumed, and the dark-energy term in the second
equation follows from integrating its equation of motion,
d(ρXa3) = −pXda3 (a is the cosmic scale factor).[†]

A. Age and growth of density perturbations

The age of the Universe today is related to the expan-
sion history of the Universe,

t0 =

∫ t0

0

dt =

∫

∞

0

dz

(1 + z)H(z)
, (2)

which depends upon the equation-of-state of the dark
energy. The more negative w is, the more accelerated
the expansion is and the older the Universe is today for
fixed H0 (see Fig. 1). To make use of this requires ac-
curate measurements of H0 and t0. Because the uncer-
tainties in each are about 10% (with possible additional
systematic errors), age of the Universe is not an accu-
rate probe of w. In any case, current measurements,
H0 = 70 ± 7 km sec−1 Mpc−1 and t0 = 13 ± 1.5 Gyr [33],
imply H0t0 = 0.93 ± 0.15 and favor w <∼ −1/2.

The dependences of H0t0 and r(z) upon w are very
similar for z ∼ 0.5− 2, and further, their ratio is insensi-
tive to ΩM (see Fig. 1). Thus, a measurement of H0t0 can
add little complementary information to that provided
by precise determinations of r(z). Of course, because of
this degeneracy, there is a valuable consistency check and
measurements of r(z) have great leverage in fixing H0t0.
None of this is very surprising since the formulas for t0
and r(z) are very similar.

The effect on density perturbations is to suppress the
growth in the linear regime, relative to the Einstein-
deSitter model, where the growth is proportional to the

[†] We have implicitly assumed that w = w(z). In general, this
need not be the case. If, for example, we had assumed w =
w(ρ), then ρX could not have been expressed in closed form.
Nevertheless, Eq. (1) can be solved if it is supplemented by the
equation governing the behavior of ρX , d ln ρX/(1 + w(ρX)) =
−3d lna. Another example is a minimally coupled scalar field,
where ρX = φ̇2/2+V (φ), and its evolution is determined by the
equation of motion of the scalar field, φ̈ + 3Hφ̇ + V ′(φ) = 0.
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FIG. 1: Age times Hubble constant as a function of (con-
stant) w for ΩM = 0.25, 0.3, 0.35 (solid curves, top to bot-
tom); current measurements indicate that H0t0 = 0.93±0.15.
To illustrate the degeneracy between age and comoving dis-
tance measurements, we plot their ratio (broken curves; top
to bottom, ΩM = 0.35, 0.30, 0.25). Note, this ratio is very
insensitive to ΩM .

cosmic scale factor. The growth of linear perturbations
is governed by the familiar equation,

δ̈k + 2Hδ̇k − 4πGρMδk = 0 (3)

where density perturbations in the pressureless cold dark
matter have been decomposed into their Fourier modes,
k is the comoving wavenumber of the mode, and it is as-
sumed that k ≫ H0. As can be seen in Fig. 2, the effect
on the growth of linear perturbations is not very signif-
icant for w <∼ − 1

2 , which is one of the virtues of dark-
energy models since the level of inhomogeneity revealed
in the CMB is just about right to explain the structure
seen today.

The reason the growth is not affected much is because
for w <∼ − 1

2 the Universe only recently became dark-
energy dominated (ρX ≥ ρM for 1 + z ≤ 1 + zX =
(ΩX/ΩM )−1/3w), and the growth of perturbations is es-
sentially the same as in a matter-dominated model until
then. Growth suppression increases with increasing w
since the onset of dark-energy domination occurs earlier
(see Fig. 2). For w >∼ − 1

2 the suppression of the growth
of linear perturbations is sufficiently large that structure
observed today could not have evolved from the density
perturbations revealed by CMB anisotropy [9, 25].

To be more specific, the suppression of growth affects
the overall normalization of the power spectrum today,
most easily expressed in terms of the rms mass fluctua-
tions in spheres of 8h−1 Mpc, or σ8 (see Fig. 3). Further,
the number density of bound objects formed by a given
redshift is exponentially sensitive to the growth of den-
sity perturbations [34]. The number density can be accu-
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FIG. 2: Growth of linear perturbations since redshift z =
1000 relative to the Einstein–deSitter model as a function of
(constant) w for ΩM = 0.3. The dark energy is assumed not
to clump.

rately estimated by the Press-Schechter formalism [35],

dn

dM
(z, M) =

√

2

π

ρM

M

δc

σ(M, z)2
dσ(M, z)

dM
exp

(

− δ2
c

2σ(M, z)2

)

(4)

where σ(M, z) is the rms density fluctuation on mass-
scale M evaluated at redshift z and computed using lin-
ear theory, ρM is the present-day matter density, and
δc ≈ 1.68 is the linear threshold overdensity for collapse.

Strong and weak gravitational lensing may be used to
constrain the growth of structure and thus probe the dark
energy. We will not address them here as detailed model-
ing of the lenses, their distribution, and the evolution of
non-linear structure is required to address their efficacy.
We refer the reader to Refs. [36]. The effect of dark en-
ergy on the growth of linear density perturbations enters
in the cluster-number-count test, as discussed below.

B. Classical tests

The other cosmological probes of the dark energy in-
volve the classical tests: magnitude vs. redshift (Hubble)
diagram, number-count vs. redshift, and angular size vs.
redshift. For the flat models that we consider, all of these
depend upon the comoving distance to an object at red-
shift z, which is determined by the expansion history:

r(z) =

∫ z

0

dx

H(x)
. (5)

Luminosity distance, which is the distance inferred
from measurements of the apparent luminosity of an ob-
ject of known intrinsic luminosity, log(dL(z)) ≡ 0.2(m −
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FIG. 3: The rms amplitude of matter perturbations on the
scale 8h−1 Mpc as a function of (constant) w for a COBE
normalized, scale-invariant model with h = 0.7 (see Ref. [25]
for details). The present cluster abundance fixes σ8 = (0.56±
0.1)Ω−0.47

M
(95% cl) [37], indicated by the broken lines for

ΩM = 0.3. The downward trend in σ8 with increasing w is
the suppression of the growth of linear density perturbations
as dark energy domination occurs earlier, and leads to an
upper limit to w of around −1/2.

M) − 5, is related to r(z)

dL(z) = (1 + z)r(z), (6)

where m is apparent luminosity, M the absolute luminos-
ity and distances are measured in Mpc. The magnitude
– redshift (Hubble) diagram is a plot of m(z) vs. z.

The angular-diameter distance, which is the distance
inferred from the angular size of an object of known size,
dA(z) = D/θ, is related to r(z)

dA = r(z)/(1 + z). (7)

The angular-diameter distance comes into play in using
CMB anisotropy (more below) or the Alcock-Paczynski
test to probe the dark energy.

The Alcock-Paczynski compares the angular size of an
object on the sky with its the redshift extent [38]. The
diameter D of a spherical object (of fixed size or comoving
with the expansion) at redshift z is related to its angular
size on the sky dθ by dA(z)dθ and to its redshift extent
by ∆z/(1 + z)H(z). Thus, measurements of ∆z and ∆θ
can be combined to determine H(z)r(z):

H(z)r(z) =
∆z

∆θ
(8)

The trick is to find objects (or ensembles of objects)
that are spherical. One idea involves the correlation func-
tion of galaxies or of Lyman-α clouds, which, because of
the isotropy of the Universe, should have the same depen-
dence upon separation along the line-of-sight or across
the sky. A large and uniform sample of objects is needed

0 1 2 3 4 5
z

0.9

0.95

1

1.05

1.1

r(
z)

H
(z

)/
[r

(z
)H

(z
)]

w
=

−
1

w=−0.4
w=−0.6
w=−0.8
w=−1.0

FIG. 4: The Alcock-Paczynski test, which compares the an-
gular size (∆θ) of a spherical object at redshift z to its redshift
extent (∆z), can determine r(z)H(z). Its sensitivity is shown
here for ΩM = 0.3 and constant w = −0.4,−0.6,−0.8,−1.0.

to implement this test; further, the effects of peculiar
velocities induced by density perturbations must be sep-
arated from the small (5% or so) cosmological effect [39].

The authors of Ref. [40] have discussed the feasibil-
ity of using the correlation function of Lyman-α clouds
seen along the lines-of-sight of neighboring high-redshift
quasars to distinguish between a low-density model and a
flat model with dark energy. Fig. 4 shows the sensitivity
of this technique to w; whether or not it has the power to
probe the nature of the dark energy remains to be seen.

The comoving volume element is the basis of number-
count tests (e.g., counts of lensed quasars, galaxies, or
clusters of galaxies). It is given in terms of r(z) and
H(z)

f(z) ≡ dV

dzdΩ
= r2(z)/H(z) . (9)

Note too that

f(z) =
dF (z)

dz
F (z) =

∫ z

0

f(z)dz =
r(z)3

3
. (10)

The ability of these cosmological observables to probe
the dark-energy equation-of-state depends upon their
sensitivity to w. To begin, consider the case of constant
w. The sensitivity of r(z), H(z) and f(z) to w is quan-
tified by

dr(z)

dw
= −3

2

∫ z

0

ΩXH2
0 (1 + x)3(1+w) ln(1 + x) dx

H3(x)
(11)

df(z)

dw
=

2r(z)

H(z)

dr

dw
− r(z)2

H(z)2
dH

dw
(12)

dH(z)

dw
=

3

2

ΩXH2
0 (1 + z)3(1+w) ln(1 + z)

H(z)
(13)
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FIG. 5: Comoving volume element f(z) = dV/dΩdz vs. red-
shift for constant w = −1,−0.8,−0.6,−0.4 (from top to bot-
tom).

The comoving distance to an object at redshift z and
its sensitivity to w is shown in Fig. 6. At small redshifts
r(z) is insensitive to w for the simple reason that all cos-
mological models reduce to the Hubble law (r = H−1

0 z)
for z ≪ 1,

r(z) → H−1
0

[

z − 3

4
z2 − 3

4
ΩXwz2 + · · ·

]

for z ≪ 1

(14)

At redshift greater than about five, the sensitivity of
r(z) to a change in w levels off because dark energy be-
comes an increasingly smaller fraction of the total energy
density, ρX/ρM ∝ (1 + z)3w. As we shall discuss later,
the fact that dr/dw increases monotonically with redshift
means that for measurements of fixed error, one would
want to make the measurement at the highest redshift
possible in order to minimize the uncertainty in the in-
ferred value of w.

Fig. 7 shows the relative change in r(z) and in the
comoving volume element f(z) due to a change in w as
a function of redshift. The sensitivities of r(z) and f(z)
peak at redshifts around unity. The reason for decreased
sensitivity at small and large redshifts is as discussed just
above.

As noted earlier, observations at redshifts 0 <∼ z <∼ 2
will be most useful in probing the dark energy. This fact
is made more quantitative in Fig. 8, which shows the
accuracy of the determination of the equation-of-state w
(assumed constant) using 2000 SNe Ia, as a function of
maximum redshift probed zmax. For 0.2 <∼ zmax <∼ 1,
the 1σ uncertainty σw decreases sharply and then levels,
with little decrease for zmax >∼ 1.5.

0.0 0.1 1.0 10.0 100.0 1000.0
z

0.0

1.0

2.0

3.0

4.0

−dr/dw

r(z)

FIG. 6: r(z) and dr/dw as a function of z (in units of H−1

0
)

for ΩM = 0.3 and w = −1.

0 1 2 3 4 5
z

0

0.2

0.4

0.6

0.8

−dlnr/dw

−dlnf/dw

dlnH/dw

FIG. 7: The relative sensitivity of r(z), f(z), and H(z) to a
change in the constant value of w.

C. CMB anisotropy

The gravity-driven acoustic oscillations of the baryon-
photon fluid at the time of last scattering gives rises to a
series of acoustic peaks in the angular power spectrum of
CMB anisotropy (see Fig. 9) [41]. The CMB is a snap-
shot of the Universe at z = zLS ≃ 1100 and the peaks
correspond to different Fourier modes caught at maxi-
mum compression or rarefaction, when the fluctuation in
the photon temperature is at an extremum. The con-
dition for this is kηSH ≃ nπ, where the odd (even) n
modes are compression (rarefaction) maxima and ηSH is
the sound horizon:

ηSH =

∫ tLS

0

vs dt

R(t)
=

∫

∞

zLS

vs(z
′)dz′

H(z′)
(15)

v2
s =

1/3

1 + 3ρB/4ργ
(16)
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FIG. 8: 1σ accuracy in the determination of constant w as a
function of maximum redshift probed zmax for a flat Universe,
2000 SNe and marginalizing over the other parameter, ΩM .
The upper curve shows the uncertainties using the fiducial
SNAP dataset, while the lower curve shows uncertainties ob-
tained the mathematically optimal strategy (see Sec. V). For
all zmax, 2000 SNe were used, with a redshift distribution as
shown in Fig. 12 for the upper curve.

10 100 1000
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40
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T
C

M
B
 [l

(l+
1)

C
l/(

2π
)]

1/
2  (

µK
)

FIG. 9: COBE-normalized angular power spectrum of CMB
anisotropy for a flat model with ΩBh2 = 0.02, ΩX = 0.7,
h = 0.65 and w = −1, obtained using CMBFAST [42]. The
acoustic peaks correspond to modes that at the moment of last
scattering are at maximum compression (odd) or rarefaction
(even).

Modes captured at maximum compression or rarefac-
tion provide standard rulers on the last-scattering surface
with physical sizes d ∼ π/k (1 + zLS) ∼ ηSH/n (1 + zLS)
Their angular sizes on the CMB sky are given by

θn ∼ ηSH/n

(1 + zLS)dA(zLS)
(17)

dA(LS) = (1 + zLS)
−1

∫ zLS

0

dz′

H(z′)
(18)

This can be made more precise for the angular power

spectrum. The angular power at multipole l is dominated
by modes around k ≃ l/ηLS, and so the positions of the
peaks are given approximately by (see, e.g., Ref. [43])

ln = nπ
ηLS

ηSH
. (19)

For a flat Universe ηLS is just the coordinate distance to
the last-scattering surface r(zLS).

The positions of the acoustic peaks are the primary
sensitivity the CMB has to the equation-of-state of the
dark energy (see Fig. 10). Most of that sensitivity arises
from the dependence of the distance to the last-scattering
surface upon the time history of w. Using the approxima-
tion above, and taking into account the other important
cosmological parameters, it follows that

∆l1
l1

= −0.084∆w − 0.23
∆ΩMh2

ΩMh2
+ 0.09

∆ΩBh2

ΩBh2

+0.089
∆ΩM

ΩM
− 1.25

∆Ω0

Ω0
(20)

around w = −1, h = 0.65, ΩM = 0.3, ΩBh2 = 0.02
and Ω0 = 1. Other features of the CMB power spectrum
(e.g., heights of the acoustic peaks and damping tail) can
precisely determine the matter density (ΩMh2) and the
baryon density (ΩBh2); therefore, for a flat Universe the
main dependence of the position of the acoustic peaks
is upon ΩM and w. For ΩM ∼ 0.3, l1 is about three
times more sensitive to ΩM than w. Interestingly enough,
the recent data from the BOOMERanG and MAXIMA-
1 experiments indicate that the first peak is located at
around l ≃ 200 [7], which indicates a larger value of w,
w ∼ −0.6, than the supernova data and suggests the
dark energy may be something other than a cosmological
constant. However, there is little statistical significance
to this result.

(The CMB angular power spectrum has additional sen-
sitivity to dark energy which is not captured by Eq. (20).
It arises through the late-time ISW effect and the slight
clumping of dark energy, and mainly affects the low-order
multipoles. Because of the large cosmic variance at large
scales, this dependence is not likely to significantly en-
hance the ability of CMB anisotropy to probe w.)

D. Time-varying w

There is no compelling reason to believe that the dark
energy is characterized by a constant w. In particular,
if the dark energy is associated with an evolving scalar
field then the effective equation-of-state,

w(t) ≡ pφ/ρφ =
1
2 φ̇2 − V (φ)
1
2 φ̇2 + V (φ)

, (21)

is in general time-varying. Thus, sensitivity to the value
of w(z) at a given z is an important measure of the pro-
bative power of a given test. Needless to say, in order to
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FIG. 10: The position of the first acoustic peak as a function
of w for ΩBh2 = 0.02 and ΩMh2 = 0.13.

probe the variation of w with redshift, one has to per-
form measurements at different redshifts. Thus, CMB
anisotropy and the age of the Universe cannot probe this
aspect of the dark energy; rather, they can only measure
some average value of w.

We now consider the effect of a change in w at red-
shift z∗; specifically, a change in w over a small redshift
interval around z = z∗, such that

∫

δw(z)d ln z = 1. The
effect on H(z) for z > z∗, which we denote by the func-
tional derivative δH/δw(z), is

δH(z)

δw(z)
=

3

2

z∗
1 + z∗

ΩXH2
0 exp

[

3
∫ z

0
(1 + w)d ln(1 + z)

]

H(z)
(22)

and zero for z < z∗. Note that the effect of δw(z) on
the expansion rate is essentially to change it by a fixed
amount for z > z∗.

The effect on r(z) and f(z) = r(z)2/H(z) follows by
simple calculus:

δ ln r

δw(z)
=

1

r(z)

∫ z

0

(

−δH

δw

)

dz

H(z)2
(23)

δ ln f

δw
= 2

δ ln r

δw
− 1

H(z)

δH

δw
(24)

The sensitivity of r(z) and f(z) to a localized change
in w is shown in Fig. 11, where we take z∗ = 0.9z. Both
r(z) and the comoving volume element are insensitive
to the value of w(z) at small redshift (since r and H
are insensitive to the form of the dark energy) and at
large redshifts (because ρX/ρM decreases rapidly). They
are most sensitive to w(z) over the redshift range z ∼
0.2 − 1.5, with the sweet spot being at z ≈ 0.4.

As discussed in Ref. [44], measurements of r(z) can in
principle be used to reconstruct the equation-of-state (or
scalar-field potential in the case of quintessence). The

0 1 2 3
z*

10
−3

10
−2

10
−1

10
0

δlnf/δw

δlnr/δw

FIG. 11: The relative sensitivity of the comoving distance
r(z) and the comoving volume element f(z) to a localized
change in the value of w at redshift z∗ characterized by
∫

δw(z)d ln z = 1.

reconstruction equation for w(z) is

1+w(z) =
1 + z

3

3H2
0ΩM (1 + z)2 + 2(d2r/dz2)/(dr/dz)3

H2
0ΩM (1 + z)3 − (dr/dz)−2

.

(25)
This equation can be used to illustrate yet again the

difficulty of probing the dark energy at high redshift.
Suppose that r(z) and its derivatives are measured very
accurately and that the only uncertainty in reconstruct-
ing w(z) is due to ΩM . The uncertainty in w(z) due to
the uncertainty in ΩM can be obtained by differentiating
Eq. (25) with respect to ΩM :

∆w(z) =
−(1 + z)3

ΩX exp
[

3
∫

(1 + w) d ln(1 + z)
] ∆ΩM(26)

→ −(1 + z)−3w

ΩX
∆ΩM (const w) (27)

Therefore, the uncertainty in w(z) increases with red-
shift sharply, as (1+z)−3w. This happens because w < 0
and the dark energy constitutes an increasingly smaller
fraction of the total energy at high redshift.

The reconstruction equations based upon number
counts can simply be obtained by substituting [3F (z)]1/3

for r(z) in Eq. (25). Since the expansion history H(z) can
in principle be obtained from measurements of f(z) and
r(z) (number counts and Hubble diagram), or from r(z)
and r(z)H(z) (Hubble diagram and Alcock-Paczynski
test), with a sense of great optimism we write the recon-
struction equation based upon a determination of H(z):

1 + w(z) =
1

3

2(1 + z)H ′(z)H(z) − 3H2
0 (1 + z)3ΩM

H2(z) − H2
0ΩM (1 + z)3

(28)
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which follows from

dr(z) = −dt/a(t) = dz/H(z). (29)

This reconstruction equation has the virtue of depending
only upon the first derivative of the empirically deter-
mined quantity.

E. Summing up

In sum, the properties of the dark energy are best re-
vealed by probes of the low-redshift (z ∼ 0.2 − 2) Uni-
verse – SNe Ia, number-counts and possibly the Alcock-
Paczynski test. The CMB has an important but more
limited role to play since it can only probe an average
value of w. SNe Ia are currently the most mature probe
of the dark energy, and already impose significant con-
straints on w [1, 45, 50], w < −0.6 (95% CL). The effi-
cacy of any of these tests will depend critically upon the
identification and control of systematic error (more late).

The classical cosmological tests that involve r(z) alone
have the virtue of only depending upon ΩM , ΩX and
w, which can be reduced to two parameters (ΩM and w)
with a precision measurement of Ω0 from the CMB. CMB
anisotropy on the other hand depends upon a large num-
ber of parameters (e.g., ΩBh2, h, n, dn/d lnk, ionization
history, etc). The number-count tests can also depend
upon the growth of structure which brings in other pa-
rameters that affect the shape of the power spectrum (e.g.
n, ΩBh2, h).

In the remainder of this paper we pay special attention
to SNe Ia, and in particular consider how well the dark
energy could be probed by a high-quality dataset pro-
vided by the proposed satellite mission SNAP [27]. As
the fiducial dataset, we consider a total of 2000 SNe Ia
with individual statistical uncertainties of 0.15 mag (the
impact of systematic uncertainties to this dataset was
studied in Refs. [27, 30, 31]). The bulk of the SNe are
assumed to have 0.2 < z < 1.2, with about a hundred at
1.2 < z < 1.7 and another two hundred or so at z < 0.2.
The low-z sample is expected from near-future ground
searches, such as the Nearby Supernova Factory [46].

The number-count technique can be implemented in a
variety of ways — for example, halos of a fixed mass [47],
clusters of galaxies of fixed mass [49], and gravitationally
lensed quasars [53]. All of these methods, however, are
susceptible to redshift evolution of the objects in ques-
tion, as well as considerable uncertainties in theoretical
modeling.

Unless otherwise indicated, we use the Fisher-matrix
formalism throughout to estimate uncertainties [60, 61].
In several instances we have checked that the values ob-
tained agree well with those using Monte-Carlo simula-
tion. The fiducial cosmological model is ΩM = 1−ΩX =
0.3, w = −1, unless otherwise indicated.
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FIG. 12: Histogram of projected SNe Ia distribution from
SNAP. The number of SNe at z > 1.2 is smaller because
spectra of SNe at such high z are redshifted into the infrared
region, where observations are more difficult. About 200 SNe
at z < 0.2 are assumed to be provided by ground-based SNe
searches.

III. CONSTRAINTS ON (CONSTANT) w

To begin, we assume that the equation-of-state of the
dark energy does not change in time, w(z) = w = const.
Not only does this hold for models with truly constant w
(vacuum energy, domain walls and cosmic strings, etc.)
but models with time-variable equation-of-state can have
w ≈ const out to z ∼ 2.

A. SNe Ia and CMB

0 0.2 0.4
ΩM

−1.0

−0.8

−0.6

−0.4

w

SDSS
MAP(P)

SNAP

current
SN Planck(P)

FIG. 13: Projected SNAP constraint compared to those pro-
jected for MAP and Planck (with polarization information)
and SDSS (MAP, Planck and SDSS constraints are from
Ref. [51]). Also shown are the present constraints using a
total of 54 SNe Ia. All constraints assume a flat Universe and
ΩM = 1 − ΩX = 0.28, w = −1 as fiducial values of the pa-
rameters. All contours are 68% cl, and were obtained using
the Fisher-matrix analysis.
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Fig. 13 shows that a supernova program, such as
SNAP [27], will enable very accurate measurement of w:
σw ≈ 0.05, after marginalization over ΩM and assum-
ing a flat Universe. This figure also shows constraints
anticipated from the Sloan Digital Sky Survey (SDSS)
and MAP and Planck satellites (with polarization infor-
mation). As expected, the fact that the dark energy is
smooth on observable scales implies that its properties
cannot be probed well by galaxy surveys.

The CMB, on the other hand, is weakly sensitive to
the dark energy, mainly through the dependence of the
distance to the surface of last scattering upon w. The
orientation of the CMB ellipses is roughly predicted from
Eq. (20), indicating that this equation captures most of
the CMB dependence upon dark energy.

The CMB provides only a single measurement of the
angular-diameter distance to the surface of last scatter-
ing, albeit an accurate one. In the case of Planck, the
angular-diameter distance to the last-scattering surface is
measured to 0.7% [55]. Fig. 13 illustrates that ultimately
CMB is not likely to be as precise as a well-calibrated
SNe dataset. It does provide complementary informa-
tion and a consistency check. However, combining SNAP
and Planck improves the SNAP constraint only by about
5-10%.

The uncertainty in the determination of w varies as a
function of the central value of this parameter. As w in-
creases from −1, the SNe constraint becomes weaker: the
variation of dark energy with redshift becomes similar to
that of matter, and it is more difficult to disentangle the
two components by measuring the luminosity distance.
For example, for w = −0.7 and keeping ΩM = 0.3, the
constraints on these two parameters from SNAP deterio-
rate by 10% and 50% respectively relative to the w = −1
case. On the other hand, the CMB constraint becomes
somewhat stronger with increasing w because the ISW
effect increases (see Fig. 5 in Ref. [51]).

B. Number-counts

Davis and Newman [47] have argued that the comov-
ing abundance of halos of a fixed rotational speed (nearly
fixed mass) varies weakly with the cosmological model
and can be calibrated with numerical simulations, leav-
ing mostly the dependence on the volume element [47].
We follow these authors in assuming 10000 galaxy halos
divided into 8 redshift bins at 0.7 < z < 1.5. The redshift
range for the DEEP survey roughly corresponds to the
redshift range of greatest sensitivity to dark energy.

Fig. 14 shows the constraints obtained using the
Fisher-matrix formalism assuming Poisson errors only,
and then allowing for an additional 10% or 20% error per
bin for the uncertainty in the evolution of the comoving
halo density. Assuming no uncertainty in the comoving
halo density, the error ellipse is similar to that of SNAP.
However, allowing for a modest uncertainty due to evo-
lution (10 or 20%), the size of the error ellipse increases

0 0.2 0.4
ΩM

−1.0

−0.8

−0.6

−0.4

w

FIG. 14: Constraints in the ΩM -w plane using galaxy-halo
counts from the DEEP survey [47]. Inner most region shows
the constraint assuming Poisson errors only, while the outer
two regions assume an additional, irreducible uncertainty of
10% and 20% (per bin) in the comoving number density of
halos due to evolution. All regions are 68% cl.

significantly. Finally, we note that any probe sensitive
primarily to dV/dΩdz will have its error ellipse oriented
in the direction shown.

X-ray survey

SZE survey

FIG. 15: Projected one, two and three σ constraints on
ΩM and w in a flat Universe using counts of galaxy clusters
(adopted from Ref. [49]) for an x-ray selected sample of thou-
sand clusters (top panel) and a Sunyaev-Zel’dovich selected
sample of hundred clusters (bottom).

While clusters are simpler objects than galaxies, they



10

are “rare objects” and their abundance depends expo-
nentially upon the growth of density perturbations and
varies many orders-of-magnitude over the redshift range
of interest [34]. The sensitivity to the growth factor out-
weighs that of the cosmological volume, and the error
ellipses for the cluster number-count test are almost or-
thogonal to the halo-number count test (see Fig. 15).
The information provided is thus complementary to halo
counts and SNe data.

Because of the exponential dependence of the abun-
dance, control of the systematic and modeling errors is
critical. Especially important is accurate determination
of cluster masses (use of weak-gravitational lensing to de-
termine cluster masses might be very useful [48]). Shown
in Fig. 15 are the estimated constraints for sample of a
hundred clusters with 0 < z < 3 selected in a future
Sunyaev-Zel’dovich survey and a thousand clusters with
0 < z < 1 selected in a future x-ray survey [49]. These
cluster constraints are comparable and complementary
to those of the halo counts when a 20% uncertainty in
halo-number evolution is taken into account.

IV. PROBING THE TIME-HISTORY OF DARK
ENERGY

Although some of the models for the dark energy,
such as the vacuum energy, cosmic defects and some
quintessence models produce w = const (at least out to
redshifts of a few), the time-variation of w is a potentially
important probe of the nature of dark energy. For exam-
ple, evolving scalar field models generically time-variable
w. Moreover, in some cases (e.g. with PNGB scalar field
models [52] and some tracker quintessence models [13])
w(z) can exhibit significant variation out to z ∼ 1.

A. Constraining the redshift dependence of w

Given a dark-energy model it is easy to compute w(t)
and from it the prediction for r(z). There is little theo-
retical guidance as to the nature of the dark energy, so
we seek ways to parameterize w(z) as generally as pos-
sible. A further complication is the degeneracy of w(z)
with ΩM and ΩX . To make useful progress, we assume
that by the time a serious attempt is made to probe the
rate of change of w, ΩM and ΩX will be measured ac-
curately (e.g., ΩM + ΩX from CMB anisotropy, and ΩM

from large-scale structure surveys).

B. Case I: w(z) = w1 + w′(z − z1)

The simplest way to parameterize the rate of change
of w is to write the first-order Taylor expansion

w(z) = w1 + w′(z − z1), (30)

−1 −0.9 −0.8 −0.7 −0.6 −0.5
w1=w(z=0.31)
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w
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z|
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0.
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FIG. 16: Here w(z) was Taylor-expanded around z1 = 0.31
with fiducial model w(z) = −0.8+0.1 z. The top panel shows
68% and 95% cl constraints in the w1-w

′ plane. The bottom
panel shows the same constraint in the w-z plane, with the
fiducial model (heavy line) and confidence regions (shaded).
The broken lines in both panels should the effect of assuming
a Gaussian uncertainty of 0.05 in ΩM .

where w1 = w(z = z1) and w′ ≡ (dw/dz)z=z1
are con-

stants and z1 is the redshift around which we expand
(chosen according to convenience or theoretical preju-
dice). The energy density in the dark component is then
given by

ρX(z) = ρX(0)(1 + z)3(1+w1−w′(1+z1)) exp(3w′ z). (31)

Using the Fisher-matrix formalism, we determine the
error ellipses in the w1-w

′ plane. We choose z1 so that w1

and w′ become uncorrelated, (how to do this analytically
is shown in Ref. [54]). For uncorrelated w1 and w′, the
constraint to w(z) follows by computing

σw(z) =
[

σ2
w1

+ σ2
w′ (z − z1)

2
]1/2

. (32)

Fig. 16 illustrates the error ellipse for w1 and w′ (top
panel) and the constraint to w(z) (bottom panel). As
we discussed in Sec. II, cosmological observations have
diminishing leverage at both high and low redshift, which
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is reflected in the narrow “waist” at z ∼ 0.35, and this is
the sweet spot in sensitivity to w(z) (see Fig. 11).

The uncertainty in the slope, σw′ = 0.16, is about 8
times as large as that in w(z1), σw1

= 0.02. Despite the
relatively large uncertainty in w′, this analysis may be
useful in constraining the dark-energy models.

Finally, we also show in Fig. 16 the significant effect of
a Gaussian uncertainty of 0.05 in ΩM ; it roughly doubles
σw1

and σw′ and moves the value of z1 that decorrelates
the two parameters to less than zero.

C. Case II: w(z) = w1 − α ln[(1 + z)/(1 + z1)]

There are other ways to parameterize the variation of
w(z) with redshift. Efstathiou [56] argues that many
quintessence models produce equation-of-state ratio that
is well approximated by w(z) = w0 − α ln(1 + z) with
w0 and α constants. We generalize this by expanding
around an arbitrary redshift z1

w(z) = w1 − α ln

(

1 + z

1 + z1

)

. (33)

Here, the energy density in the dark energy evolves as

ρX(z) = ρX(0)(1 + z)3(1+w1+α ln(1+z1)) × (34)

exp

[

−3

2
α ln2(1 + z)

]

. (35)

As with the Taylor expansion, we have a 2-parameter
form for w(z) and, using the supernova data, we examine
the constraints that can be imposed on w1 and α. We
again choose z1 so that w1 and α are decorrelated; this
occurs for z1 = 0.30.

Fig. 17 shows 68% and 95% cl constraint regions in
the w1-α plane (top panel) and w-z plane (bottom).
The fiducial model (w1 = −0.75, α = −0.2) is chosen
to produce w(z) similar to that from linear expansion
(Case I). The uncertainty in parameter determination is
σw1

= 0.02 and σα = 0.21. The bottom panel of this
figure shows that using the logarithmic expansion we ob-
tain similar constraints to w(z) as with the linear expan-
sion. This is not surprising, as near the leverage point
z1 ≈ 0.3, the two expansions are essentially equivalent
with α = (1 + z1)w

′ and σα = (1 + z1)σw′ , which is
consistent with our results.

D. Case III: Constant w in redshift bins

An even more general way to constrain w(z) is to pa-
rameterize it by constant values in several redshift bins,
since no particular form for w(z) need be assumed. Of
course, more redshift bins lead to weaker constraints in
each bin.
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FIG. 17: Here the dark energy is parameterized by w(z) =
w1 − α ln[(1 + z)/(1 + z1)], with w1 = −0.75 and α = −0.2.
The top panel shows 68% and 95% cl constraints in the w1-α
plane. The bottom panel shows the same constraint in the
w-z plane, with the fiducial model (heavy line) and 68% and
95% cl confidence region (shaded).

We divide the SNAP redshift range into B bins cen-
tered at redshifts zi with corresponding widths ∆zi and
equation-of-state ratios wi (i = 1, . . . , B). The energy
density of the dark component evolves as (zj−1 < z < zj)

ρX(z) = ρX(z = 0)

j−1
∏

i=1

(

1 + zi + ∆zi/2

1 + zi − ∆zi/2

)3(1+wi)

×

(

z

1 + zj − ∆zj/2

)3(1+wj)

. (36)

To obtain the constraints using this approach, we again
employ the Fisher matrix formalism, treating wi as the
parameters to be determined.

Fig. 18 shows constraints on w(z) when w is parame-
terized by values in three redshift bins whose widths are
chosen so that the uncertainty in each is about the same.
Precise knowledge of ΩM and ΩX was assumed.



12

0 0.5 1
z

−1

−0.5

0
w

FIG. 18: Here w(z) is parameterized by constant values in
redshift bins. The outer region shows 68% cl constraints cor-
responding to each redshift bin. The inner region shows 68%
cl constraints when, in addition, a Gaussian prior is imposed
that penalizes models with a large change in w between two
adjacent bins.

The constraints are not strong (σw ≈ 0.12) in part be-
cause the values of w in adjacent bins are uncorrelated.
Most realistic models with time-dependent equation-of-
state have w(z) that varies slowly (or doesn’t vary at
all) out to z ∼ 1. Therefore, we also show results when
a Gaussian prior is imposed that penalizes models with
large change in w between two adjacent bins (σw = 0.10
for change in ∆wi between adjacent bins). The 1σ con-
straints improve by more than a factor of two.

E. Non-parametric Reconstruction

The most general approach is the direct reconstruction
of w(z) from the measured luminosity distance – redshift
relation provided by the SNe Ia data [44, 57, 58, 59]. This
method is non-parametric and no assumptions about the
dark energy or its equation-of-state are needed. This
is also the most challenging approach, since the recon-
structed potential and equation-of-state ratio will depend
on first and second derivatives of the distance with re-
spect to redshift, cf. Eq. (25). This leads to a funda-
mental problem: even very accurate and dense measure-
ments of r(z) allow great freedom in r′ ≡ dr/dw and
r′′ ≡ d2r/dw2, because they themselves are not probed
directly.

To address this problem, various authors have advo-
cated polynomials and Padé approximants [44] and var-
ious fitting functions [30, 58, 59] to represent r(z) and
thereby reduce the inherent freedom in r′ and r′′.

In Fig. 19, we show the simulated reconstruction
of the quintessence model with potential V (φ) =
M4[exp(mPl/φ) − 1] [13] and ΩX = 0.50. We assumed
2000 SNe uniformly distributed out to z = 1.5 with in-
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FIG. 19: Reconstruction of the quintessence model with po-
tential V (φ) = M4[exp(mPl/φ)− 1] [13] and ΩX = 0.50. The
solid line is the input model, and the shaded regions are the
68% and 95% confidence, produced from Monte Carlo sim-
ulation of 2000 SNe uniformly distributed out to z = 1.5
with individual uncertainties of 0.15 mag (7% in distance).
A three-parameter Padé approximant fit to r(z) was used.
In the lower panel the reconstruction is shown as w(z) =

( 1

2
φ̇2 − V )/( 1

2
φ̇2 − V ).

dividual uncertainties of 0.15 mag. Data were fit by a
three-parameter Padé approximant of the form

r(z) =
z(1 + a z)

1 + b z + c z2
. (37)

We have also tried other fitting functions that have
been suggested [30, 58, 59], as well as a piecewise cubic
spline with variable tension. We find that all are able
to fit the predicted form for r(z) well (about 0.2% accu-
racy). However, a good fit is not the whole story – r′(z)
and r′′(z) are equally important – and the small bumps
and wiggles between the between the fit and the actual
form predicted by the dark-energy model are important
because they lead to reconstruction error.

In sum, non-parametric reconstruction is very chal-
lenging, and an oxymoron: as a practical matter the data
must be fit by a smooth function. Nevertheless, in the
absence of a handful of well motivated dark-energy mod-
els, reconstruction offers a more general means of getting
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at the time dependence of w and the very nature of the
dark energy. Finally, it goes without saying that the best
way to test a specific model is to use it as a representation
of the dark energy.

F. Number Counts

Probing w(z) by number counts will involve all the
difficulties just discussed for SNe Ia, and the additional
issue of separating the evolution of the comoving density
of objects (galaxies or clusters) from the cosmological
effects of dark energy. To test the probative power of
number counts, we consider a cosmological probe that is
primarily sensitive to the volume element dV/dzdΩ, such
as the galaxy-halo test using the DEEP survey [47]. In
order to achieve comparable constraints to those provided
by SNe Ia, we find that dV/dzdΩ must be measured to
2-3% in each redshift bin. Even with thousands of halos,
the accuracy in the number counts in each redshift bin
must be Poisson-limited – a very challenging goal when
the ever-present uncertainties in theoretical predictions
of abundances of these objects are taken into account.
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FIG. 20: The 95% cl constraint on w(z) when the dark energy
is parameterized by w1 and w′ and the halo counts are divided
into 8 redshift bins with 0.7 < z < 1.5 (solid lines) and 15
redshift bins with 0 < z < 1.5 (dashed lines). The light
dotted lines show the result with 8 bins and 0.7 < z < 1.5,
but now with a 10% (per bin) additional uncertainty due to
the evolution.

The solid line in Fig. 20 shows the 95% cl constraint on
w(z) when this function is parameterized by w1 and w′

for Case I above, with the choice of z1 = 0.35 to decor-
relate these two parameters. Two cases were considered,
each with a total of 10000 halos. In the first, the objects
were binned into 8 redshift bins with 0.7 < z < 1.5, as ex-
pected for the DEEP sample [47]. In the second case, the
objects were binned in 15 redshift bins with 0 < z < 1.5
(here z1 = 0.27). Filling in the low redshift end improves
the constraint.

Finally, we show the constraint to w(z) in the case of
10000 halos with 0.7 < z < 1.5, but now assuming that

there is a 10% (per bin) additional uncertainty due to the
evolution of the comoving number density of halos. The
constraint is now considerably weaker, and only w(z ≈
0.4) is determined accurately.

V. OPTIMAL STRATEGIES

Here we consider strategies for the most accurate de-
termination of the cosmological parameters, ΩM , ΩX and
the equation-of-state of the dark energy, wX , using high-
redshift supernovae (we add subscript ’X’ to distinguish
it from the weight functions defined below). To this end,
we ask, given the cosmological parameters we want to
determine, what is the optimal redshfit distribution to
best constrain those parameters?

At first glance this problem may appear of purely aca-
demic interest since we are not free to put supernovae
where we please. However, supernova observers have con-
siderable freedom in choosing redshift ranges for their
searches, by using filters sensitive to wavelengths cor-
responding to spectra at observed redshifts. Moreover,
supernovae are easier to discover than follow up, and
the answer to the question we pose could well be im-
plemented in the choice of which supernovae are followed
up.

In this section we make three assumptions:
(i) Magnitude uncertainty, σm, is the same for each

supernova irrespective of redshift (this is a pretty good
approximation for the current data sets).

(ii) Total number of supernovae observed is fixed (e.g.,
rather than the total observing time).

(iii) The number of supernovae that can be found at
any redshift is not a limiting factor (this is not likely to
be a serious consideration).

(iv) For simplicity we assume that type Ia supernovae
are standard candles; in fact, they are (at best) standard-
izable candles whose peak luminosity is related to their
rate of decline brightness.

None of these assumptions is required to use the for-
malism we develop; rather, we make them for concrete-
ness and simplicity. Moreover, any or all of these assump-
tions can be relaxed with the framework we present. Fi-
nally, unless the assumptions prove to be wildly wrong,
the results will not change much.

A. Preliminaries

We tackle the following problem: given N supernovae
and their corresponding uncertainties, what distribution
of these supernovae in redshift would enable the most ac-
curate determination of P cosmological parameters? In
the case of more than one parameter, we need to define
what we mean by “most accurate determination”. Since
the uncertainty in measuring P parameters simultane-
ously is described by an P -dimensional ellipsoid (with
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the assumption that the total likelihood function is Gaus-
sian), we make a simple and, as it turns out, mathe-
matically tractable requirement that the ellipsoid have
minimal volume. This corresponds to the best local de-
termination of the parameters.

The volume of the ellipsoid is given by

V ∝ det(F )−1/2, (38)

where F is the Fisher matrix [60, 61]

Fij = −
〈

∂2 lnL

∂pi∂pj

〉

y

, (39)

and L is the likelihood of observing data set y given
the parameters p1 . . . pP . In Appendix A we present the
derivation of Eq. (38). To minimize the volume of the
uncertainty ellipsoid we must maximize det(F ).

Fisher matrix. The Fisher matrix for supernova mea-
surements was worked out in Ref. [62]; we briefly review
their results, with slightly different notation and one im-
portant addition.

The supernova data consist of measurements of the
peak apparent magnitude of the individual supernovae,
mi, which are related to the cosmological parameters by

mi = 5 log [H0dL(zn, ΩM , ΩΛ)] + M + ǫi (40)

where dL is the luminosity distance to the supernova,
M ≡ M − 5 logH0 + 25, M is the absolute magnitude of
a type Ia supernova, and ǫi is the error in the magnitude
measurement (assumed to be Gaussian with zero mean
and standard deviation σm). Note that M contains all
dependence on H0, since dL ∝ 1/H0.

The Fisher matrix is defined as [62]

Fij =
1

σ2
m

N
∑

n=1

wi(zn)wj(zn) (41)

where the w’s are weight functions given by

wi(z) ≡ 5

ln 10

{

κS′[κI(z)]

S[κI(z)]

[

∂I

∂pi
− I(z)

2κ2

]

+
1

2κ2

}

,

(42)
if the parameter pi is ΩM or ΩX , or else

wi(z) ≡ 5

ln 10

[

κS′[κI(z)]

S[κI(z)]

∂I

∂pi

]

(43)

if pi is wX . Also

H0 dL = (1 + z)
S(κI)

κ
, (44)

S(x) =







sinh(x), if Ω0 > 1;
x, if Ω0 = 1;

sin(x), if Ω0 < 1.
(45)

I(z, ΩM , ΩX , wX) =

∫ z

0

H0dx/H(x) (46)

κ2 = 1 − ΩM − ΩX . (47)

When wX = −1 (cosmological constant), we use ΩΛ in
place of ΩX .

In addition to ΩM , ΩX and wX , the magnitude-
redshift relation also includes the “nuisance parameter”
M, which is a combination of the Hubble parameter and
absolute magnitude of supernovae, and which has to be
marginalized over in order to obtain constraints on the
parameters of interest. Ignoring M (that is, assuming
that M is known) leads to a 10%-30% underestimate of
the uncertainties in other parameters. (Of course, ac-
curate knowledge of H0 and a large local sample of su-
pernovae could be used to precisely determine M and
eliminate this additional parameter.) For the moment
we will ignore M for clarity; later we will show that it is
a simple matter to include M as an additional parameter
which is marginalized over.

The Fisher matrix can be re-written as

Fij =
N

σ2
m

∫ zmax

0

g(z)wi(z)wj(z)dz, (48)

where

g(z) =
1

N

N
∑

n=1

δ(z − zn) (49)

is the (normalized) distribution of redshifts of the data
and zmax is the highest redshift probed in the survey.
[g(z) is essentially a histogram of supernovae which is
normalized to have unit area.] Our goal is to find g(z)
such that det(F ) is maximal. Note that the maximization
of det(F ) will not depend on N and σm, so we drop
them for now. To consider non-constant error σm(z),
one can simply absorb σm(z) into the definition of weight
functions w(z).

B. Results

One parameter. As a warm-up, consider the
case of measuring a single cosmological parameter p1.
We need to maximize

∫ zmax

0 g(z)w2
1(z) dz, subject to

∫ zmax

0 g(z) dz = 1 and g(z) ≥ 0. The solution is a sin-
gle delta function for g(z) at the redshift where w1(z)
has a maximum. For any of our parameters, w1(z) will
have a maximum at zmax. This result is hardly surpris-
ing: we have a one-parameter family of curves m(z), and
the best way to distinguish between them is to have all
measurements at the redshift where the curves differ the
most, at zmax.

For example, Fig. 21 shows magnitude-redshift curves
for the fiducial ΩM = 0.3 model with the assumption
ΩΛ = 1−ΩM (flat Universe). As ΩM is varied, the biggest
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FIG. 21: Dependence of the magnitude-redshift relation upon
the single parameter ΩM , relative to a flat Universe with
ΩM = 0.3. The maximum difference occurs at the highest
redshift.

difference in m(z) is at the highest redshift probed. In
order to best constrain ΩM , all supernovae should be
located at zmax = 1.0,

Two parameters. A more interesting – and relevant –
problem is minimizing the area of the error ellipse in the
case of two parameters, e.g., ΩM and wX or ΩM and ΩX .
The expression to maximize is now

∫ zmax

z=0

g(z)w2
1(z)dz

∫ zmax

z=0

g(z)w2
2(z)dz −

(
∫ zmax

z=0

g(z)w1(z)w2(z)dz

)2

=
1

2

∫ zmax

z1=0

∫ zmax

z2=0

g(z1) g(z2)w(z1, z2)
2 dz1 dz2,(50)

where w(z1, z2) ≡ w1(z1)w2(z2) − w1(z2)w2(z1) is a
known function of redshifts and cosmological parameters
(see Fig. 22) and g(z) is subject to the same constraints
as before.

Despite the relatively harmless appearance of Eq. (50),
we found it impossible to maximize it analytically. For-
tunately, it is simple to find the solution numerically.
Returning to the discrete version of Eq. (48), we divide
the interval (0, zmax) into B bins with giN supernovae in
bin i. We need to maximize

B
∑

i,j=1

gi gj w(zi, zj)
2 (51)

subject to

B
∑

i=1

gi = 1 and gi ≥ 0. (52)
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FIG. 22: Top panel: Function w(z1, z2)
2 for the case when

ΩM = 0.3 and ΩΛ = 0.7. Bottom panel: Dependence of
the magnitude-redshift relation upon two parameter, ΩM and
ΩΛ, relative to a flat Universe with ΩM = 0.3. Observations
at more than one redshift are needed to distinguish different
models.

Equations (51) and (52) define a quadratic program-
ming problem — extremization of a quadratic function
subject to linear constraints. Since w(z1, z2)

2 is neither
concave nor convex (see Fig. 22), we have to resort to
brute force maximization, and consider all possible val-
ues of gi. The result of this numerical maximization is
that the optimal distribution is two delta functions of
equal magnitude:

g(z) = 0.50 δ(z − 0.43) + 0.50 δ(z − 1.00), (53)

where all constants are accurate to 0.01. Thus, half of
the supernovae should be at the highest available red-
shift, while the other half at about 2/5 of the maximum
redshift.

This result is not very sensitive to the maximum red-
shift probed, or fiducial parameter values. If we increase
the maximum available redshift to zmax = 1.5, we find
two delta functions of equal magnitude at z = 0.57 and



16

z = 1.50. If we change the fiducial values of parameters
to ΩM = 0.3 and ΩΛ = 0 (open Universe), we find delta
functions of equal magnitude at z = 0.47 and z = 1.00.

For a different choice for the two parameters, ΩM and
wX , with fiducial values ΩM = 0.3 and wX = −1 and
with the assumption of flat Universe (ΩX = 1−ΩM). we
find a similar result

g(z) = 0.50 δ(z − 0.36) + 0.50 δ(z − 1.00). (54)

Three or more parameters. We now consider param-
eter determination with three parameters ΩM , ΩX and
wX . Elements of the 3 × 3 Fisher matrix are calculated
according to Eq. (48), and we again maximize det(F ) as
described above. The result is

g(z) = 0.33 δ(z − 0.21) + 0.34 δ(z − 0.64) +

0.33 δ(z − 1.00), (55)

with all constants accurate to 0.01. Hence we have three
delta functions of equal magnitude, with one of them at
the highest available redshift.

We have not succeeded in proving that P > 3 pa-
rameters are best measured if the redshift distribution
is P delta functions. However, it is easy to prove that,
if the data do form P delta functions, then those delta
functions should be of equal magnitude and their loca-
tions should be at coordinates where the “total” weight
function [e.g. w(z1, z2)

2 in case of two parameters] has a
global maximum (see Appendix B). In practice, the num-
ber of cosmological parameters to be determined from
SNe Ia data is between one and three, so considering
more than three parameters is less relevant.

Marginalization over M. So far we have been ignor-
ing the parameter M, assuming that it is known (equiv-
alently, that the value of H0 and the absolute magnitude
of supernovae are precisely known). This, of course, is
not necessarily the case, and M must be marginalized
over to obtain probabilities for the cosmological param-
eters. Fortunately, when M is properly included, our
results change in a predictable and straightforward way.

Including M as an undetermined parameter, we now
have an (P +1)-dimensional ellipsoid (P cosmological pa-
rameters plus M), and we want to minimize the volume
of its projection onto the P -dimensional space of cosmo-
logical parameters. The equation of the P -dimensional
projection is

XT FprojX = 1 . (56)

Fproj is obtained as follows: 1) Invert the original F to
obtain the covariance matrix F−1; 2) pick the desired
PxP subset of F−1 and call it F−1

proj; 3) invert it to get
Fproj.

Minimizing the volume of the projected ellipsoid we
obtain the result that the optimal supernova distribu-
tion is obtained with P delta functions in redshift ob-
tained when ignoring M, plus a delta function at z = 0.
All P + 1 delta functions have the same magnitude. The
explanation is simple: the additional low redshift mea-
surements pin down M.

Redshift dependent σm. The optimal redshift distri-
bution changes slightly if the uncertainty in supernova
measurements is redshift dependent. Suppose for exam-
ple that σm = 0.15 + σ′z, and that zmax = 2. In case of
one parameter, the optimal location of SNe starts chang-
ing from zmax = 2 only for σ′ > 0.1, decreasing to z = 1.5
for σ′ = 0.2. For the case of two or more parameters,
the optimal distribution is even more robust – signifi-
cant change occurs only for σ′ >∼ 0.3 in the case of two
parameters, and only for σ′ >∼ 1 in the case of three.

Optimal vs. uniform distribution. Are the advantages
of the optimal distribution significant enough that one
should consider them seriously? In our opinion the an-
swer is yes, as we illustrate in the top panel of Fig. 23.
This figure shows that the area of the ΩM -ΩΛ uncer-
tainty ellipsoid is more than two times smaller if the SNe
have the optimal distribution as opposed to uniform dis-
tribution. Similar results obtain for other choices of the
parameters.

Thinnest ellipse. If we are using SNe Ia alone to deter-
mine the cosmological parameters, then we clearly want
to minimize the area of the error ellipse. However, su-
pernova measurements will also be combined with other
methods to determine cosmological parameters. A good
example of the symbiosis is combining CMB measure-
ments with those of supernovae [62, 63]. These methods
together can improve the determination of ΩM and ΩΛ

by up to a factor of 10 as compared to either method
alone by breaking the degeneracy between the two pa-
rameters. (The improvement is largest when the error
ellipses from the two methods are comparable; in the
case of SNAP and Planck, the projected SNAP ellipse
is so much smaller than Planck only improves parameter
determination by 5% to 10%; cf., Fig. 13.)

Finding the thinnest ellipse is a problem that we can
solve using our formalism. Since the length of each axis
of the ellipse is proportional to the inverse square root of
an eigenvalue of the corresponding Fisher matrix, all we
need to do is maximize the larger eigenvalue of F with
respect to the distribution of the supernovae g(z).

The result is perhaps not surprising: to get the
thinnest ellipse, all supernova measurements should be
at the same (maximum) redshift, which leads to an in-
finitely long ellipse. We find that changing the super-
novae redshift distribution doesn’t change the width of
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FIG. 23: Top and middle panel: Uniform (dark) vs. optimal
(light) distribution in redshift. Shown are constraints on ΩM

and ΩΛ (top) and on ΩM and w for a flat Universe (mid-
dle) when M was marginalized over. For these results, 100
SNe were assumed with individual uncertainties of σm = 0.15
mag; the size of the error ellipse scales as σm/

√
N . Bottom

panel: Thinnest possible ellipse for given N and σm (dark)
is infinitely long in one direction. However, the smallest-area
ellipse (light) is almost as thin.

the error ellipse greatly, but does change its length. As a
practical matter, we find the smallest area ellipse is very
close to being the thinnest ellipse (see bottom panel of
Fig. 23).

Reconstruction. In the spirit of our analyses above,
we ask: what redshift distribution of supernovae gives
the smallest 95% confidence region for the reconstructed

quintessence potential V (φ)? To answer this question,
we perform a Monte-Carlo simulation by using different
distributions of supernovae and computing the average
area of the confidence region corresponding to each of
them.

Uniform distribution of supernovae gives the best re-
sult among the several distributions we put to test. This
is not surprising, because reconstruction of the poten-
tial consists in taking first and second derivatives of the
distance-redshift curve, and the most accurate deriva-
tives are obtained if the points are distributed uni-
formly. For comparison, Gaussian distribution of super-
novae with mean z = 0.7 and spread σz = 0.4 gives the
area that is 10 − 20% larger.

VI. CONCLUSIONS

Determining the nature of the dark energy that ac-
counts for 2/3rds of the matter/energy in the Universe
and is causing its expansion to accelerate ranks as one
of the most important problems in both physics and as-
tronomy. At the moment, there is very little theoretical
guidance, and additional experimental constraints are ur-
gently needed. Because of its diffuse nature, the effect of
dark energy on the large-scale dynamics of the Universe
offers the most promising way to get this empirical infor-
mation.

The first step is to determine the average equation-of-
state of the dark energy. CMB anisotropy, supernovae
distance measurements and number counts all appear
promising. The Alcock-Paczynski shape test and the age
of the Universe seem somewhat less promising; the for-
mer because of the small size of the effect (around 5%);
and the latter because the errors in the two needed quan-
tities, H0 and t0, are not likely to become small enough
in the near future.

The main sensitivity of the CMB to the dark energy
is the w dependence of the distance to the surface of
last scattering, which moves the positions of the acoustic
peaks in the angular power spectrum. The CMB is much
more sensitive to Ω0 than w, and the ultimate sensitivity
of the CMB anisotropy to w will come from Planck, σw ≃
0.25.

Probes of the low-redshift Universe (supernovae and
number counts) seem more promising. In contrast to the
CMB, they only depend upon three cosmological param-
eters (ΩM , ΩX and w), which will be effectively reduced
to two (ΩX and w) when precision CMB measurements
determine Ω0 = ΩM + ΩX to better than 1%. They are
most sensitive to w between z ∼ 0.2 and z ∼ 2 (with
“sweet spot” at z ≃ 0.4).

A high-quality sample of 2000 supernovae out to red-
shift z ∼ 1.5 could determine w to a precision of σw =
0.05 (or better if the optimal redshift distribution is
achieved), provided that the systematics associated with
type Ia supernovae can be controlled (e.g., luminosity
evolution, photometric errors, and dust). A similar ac-
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curacy might be achieved by number counts of galaxies
out to z ∼ 1.5 or of clusters of galaxies. The critical in-
gredient is understanding (or independently measuring)
the evolution of the comoving number density (in the
case of galaxies to be better than 5%).

More difficult, but very important, is a determination
of, or constraint to, the time variation of w. If w(z) is
parameterized to vary linearly (or logarithmically) with
redshift, and assuming perfect knowledge of ΩM and ΩX ,
a precision σw′ ≃ 0.16 might be achieved by supernova
distance measurements (w′ = dw/dz). However, uncer-
tainty in ΩM significantly degrades σw′ (see Fig. 16).

Non-parametric reconstruction of either w(z) or the
potential-energy curve for a quintessence model is the
most demanding test, as it requires the first and second
derivatives of the luminosity distance dL. Even very ac-
curate measurements of dL cannot constrain the small
bumps and wiggles which are crucial to reconstruction.
Without some smoothing of the cosmological measure-
ments, reconstruction is impractical. (The combination
of number counts and supernova measurements could
determine H(z) directly and eliminate the dependence
upon the second derivative of dL.)

We have not addressed systematic error in any detail,
and for this reason our error forecasts could be very op-
timistic. On the other hand, the number of supernovae
measured could be larger and the uncertainties could be
smaller than assumed (in general, our error estimates

scale as σm/
√

N).

We are at a very early stage in the study of dark en-
ergy. Ways of probing the dark energy not discussed here
could well prove to be equally or even more important.
Four examples come to mind. First, the existence of a
compelling model (or even one or two-parameter class
of models) would make the testing much easier, as the
predictions for dL(z) and other cosmological observables
could be directly compared to observations. Second, we
have shown that one of the most powerful cosmological
probes, CMB anisotropy, has little leverage because dark
energy was unimportant at the time CMB anisotropies
were formed (z ∼ 1100). Interesting ideas are now being
discussed where the ratio of dark energy to the total en-
ergy density does not decrease dramatically with increas-
ing redshift (or even stays roughly constant) [14, 15]; if
correct, the power of the CMB as a dark energy probe
could be much greater. Third, we have assumed that the
slight clumping of dark energy on large scales is not an
important probe. While there are presently no models
where dark energy clumps significantly, if it does (or if
the clumping extends to smaller scales) CMB anisotropy
and large-scale structure measurements might have ad-
ditional leverage. Finally, it is possible that dark energy
leads to other observable effects such as a new long range
force.
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APPENDIX A: PROOF OF EQUATION (38)

To derive Eq. (38), consider a general uncertainty el-
lipsoid in n-dimensional parameter space. The equation
of this ellipsoid is

XT FX = 1, (A1)

where X = (x1x2 . . . xP ) is the vector of coordinates and
F the Fisher matrix. Let us now choose coordinates so
that the ellipsoid has its axes parallel to the new coordi-
nate axes. Here Xrot = UX , where U is the orthogonal
matrix corresponding to this rotation. The equation of
the ellipsoid in the new coordinate system is

XT
rot Frot Xrot = 1, (A2)

where Frot = UFUT is the Fisher matrix for the rotated
ellipsoid, and has the form Frot = diag(1/σ2

1, . . . , 1/σ2
P ).

The volume of the ellipsoid is just

V ∝
P
∏

i=1

σi = det(Frot)
−1/2. (A3)

Then, since det(F ) = det(Frot) and rotations preserve
volumes, we have

V ∝ det(Frot)
−1/2 = det(F )−1/2. (A4)

This completes the proof.

APPENDIX B: MEASURING P PARAMETERS

We first prove the following: if we want to determine
P parameters by having measurements that form P delta
functions in redshift (we have shown this is optimal for
P = 1, 2, 3 in Sec. VB), then those delta functions should
be of equal magnitude. The distribution of measurements
is

g(z) =

P
∑

i=1

αi δ(z − zi) (B1)

with

P
∑

i=1

αi = 1. (B2)



19

We need to maximize

detF ∝
∫

g(x1) . . . g(xP )W (x1, . . . xP ) dx1 . . . dxP

(B3)
where x’s are dummy variables and all integrations run
from 0 to zmax. Here W is given in terms of weight
functions wi, and is symmetric under exchange of any
two arguments and zero if any two arguments are the
same. Then only one term in the integrand of (B3) is
non-zero and that expression simplifies to

detF ∝ P ! α1 . . . αP W (z1, . . . zP ). (B4)

From (B2) and (B4) one easily shows that detF is maxi-
mized if W has maximum at (z1, . . . , zP ) and α1 = α2 =
. . . = αP = 1/P . Therefore, the delta functions must be
of equal magnitude, and located where W has its global
maximum.
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